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We present shakedown theorems applying to cyclically loaded media in which plastic flow and
diffusion of guest atoms are coupled. The presented theorems are in the spirit of Melan and
Koiter theorems in plasticity. They allow one to estimate the loading parameters for which
elastic shakedown occurs, i.e. for which the plastic strain stabilizes to a time-independent
limit. An application related to lithium-ion batteries is presented.
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1. Introduction

In this paper, cyclically loaded media are studied in the framework of diffusion-induced plasticity.
In the media considered, plasticity and diffusion act as two concurrent nonlinear and dissipative
processes. Elastic shakedown corresponds to the situation in which plastic dissipation is bounded.
Accordingly, the medium is expected to reach a steady state cycle in which diffusion is the only
active source of dissipation. Electrode materials in lithium-ion batteries are an example of the
medium in which stress and plastic flow are generated by diffusion of guest atoms. For such
applications, elastic shakedown is favorable for the electromechanical performance because the
hysteresis in the charge-voltage cycle is reduced (Brassart et al., 2013).

In standard plasticity (without diffusion),the Melan theorem gives a sufficient condition on
the loading for ensuring that elastic shakedown occurs, independently of any residual stress that
may exist in the initial state (Melan, 1936; Koiter, 1960). The Melan theorem (also known as the
static shakedown theorem) has been extended to several more complex behaviors than perfect
plasticity, see e.g. Peigney (2010, 2014a,b), Pham (2017), Klarbring et al. (2017) for relatively
recent examples. In particular, the Melan theorem has been extended to continuous media in
which plasticity and diffusion are coupled (Peigney, 2018). In practice, that theorem allows one
to obtain lower bounds on the set of loading parameters for which elastic shakedown occurs.

In this paper, we use convex duality to generate upper bounds, resulting in a kinematic shake-
down theorem formally similar to Koiter’s theorem in standard plasticity (without diffusion).
An application related to electrode particles in lithium-ion batteries is presented.

2. Diffusion-induced plasticity in cyclically loaded media

2.1. Conservation equations

Consider a deformable continuum occupying a domain Ω in which guest atoms diffuse. A
normal flux J of guest atoms is prescribed on a part ΓJ of the boundary. On Γµ = ∂Ω − ΓJ ,
1This work is related to a paper presented at PCM-CMM-2019
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the chemical potential µ is prescribed to take a given value M . Tractions T are prescribed on a
part ΓT of the boundary and displacements U are prescribed on Γu = ∂Ω − ΓT .
Mass conservation leads to the diffusion equation

ċ+ div  = 0 in Ω (2.1)

where c is the concentration of guest atoms and  is the flux. Equation (2.1) is complemented
by the boundary conditions

µ =M on Γµ  · n = J on ΓJ (2.2)

Assuming deformation to be much faster than diffusion, the stress field σ satisfies the equ-
ilibrium equation

divσ + f = 0 in Ω (2.3)

where f is the body force. Equation (2.3) is complemented by the boundary conditions

σ · n = T on ΓT u = U on Γu (2.4)

In the equations above, M , J , f , U, T are functions of the location x and time t that define the
applied chemo-mechanical loading history. They are assumed to be periodic in time, with the
same period T . Functions that are periodic in time with a period T are referred to as T -periodic
in the following.

2.2. Constitutive equations

An elastic-perfectly plastic constitutive material is considered. Following the thermodynamic
framework of Larché and Cahn (1973), the local state of the material is described by the total
linearized strain ε, the (deviatoric) plastic strain εp and the concentration c of guest atoms. The
free energy w of the material is taken as a quadratic function of the form

w(ε, εp, c) =
1

2
(ε− εp) : L : (ε− εp) + 1

2
kc2 + cA : (ε− εp) + cµ0 (2.5)

where L is the elasticity tensor and A is a symmetric second-order tensor accounting for the
coupling between the elastic strain ε− εp and the concentration c. The material parameter k is
assumed to satisfy the relation k > A : L−1 : A which ensures that the function w in (2.5) is
convex. From (2.5), we obtain the constitutive relations

σ =
∂w

∂ε
= L : (ε− εp) + cA µ =

∂w

∂c
= µ0 + kc+A : (ε− εp) (2.6)

Note that the concentration c has a linear influence on the stress, in a way similar to the thermal
stress. Similarly, the chemical potential µ depends linearly on the elastic strain.
It is insightful to look at the thermodynamical dissipation in the type of the medium consi-

dered. Considering for instance the case where J = 0 and ΓJ = ∂Ω (so that the continuum in Ω
forms a closed system), the second law of thermodynamics states that

Ẇ − Pext  0 (2.7)

where Ẇ =
∫
Ω ẇ dv and Pext is the external power. Using (2.6) together with equilibrium

equation (2.3) and diffusion equation (2.1), the dissipation Ẇ − Pext can be rewritten as

Ẇ − Pext =
∫

Ω

σ : ε̇p −∇µ ·  dv (2.8)
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Therefore, there are two sources of dissipation, namely the plastic dissipation
∫
Ω σ : ε̇

p and
the diffusion-related dissipation

∫
Ω −∇µ ·  dv. The law of diffusion and the plasticity flow rule

complement constitutive equations (2.6) in such fashion that the second law of thermodynamics
(2.7) is respected. In more detail, the flux  of guest atoms is assumed to obey the relation

 = −∂ψ(∇µ) (2.9)

where ψ is a positive, differentiable and strictly convex function such that ψ(0) = 0. Under such
assumptions, we have −∇µ ·   ψ(∇µ)− ψ(0)  0.
A normality flow rule is assumed for the plastic behavior, i.e.

ε̇
p = λ

∂f

∂σ
(σ) with λ  0, f(σ) ¬ 0, λf(σ) = 0 (2.10)

where f is a differentiable, strictly convex function of the deviatoric stress such that f(0) < 0.
Such assumptions guarantee that σ : ε̇p  0. The elasticity domain of the material is denoted
by C, i.e.

C = {σ : f(σ) ¬ 0}

2.3. Evolution equation for (σ, µ)

We denote by K(f ,T,M) the set of stress and chemical potential fields that are compatible
with data (f ,T,M), i.e.

K(f ,T,M) =
{
(σ, µ) : divσ + f = 0 in Ω, σ · n = T on ΓT , µ =M on Γµ

}

The set K(0, 0, 0) is more simply denoted by K0. Let (σ, µ,u, c, , εp) be a solution to the evo-
lution problem defined by the equations formulated in Sections 2.1 and 2.2. It can be shown
that

(σ, µ) ∈ K(f ,T,M)

〈(σ̇, µ̇), (ρ, ν)〉 = −
∫

Ω

(ε̇p : ρ+ ∂ψ(∇µ) · ∇ν) dω +
∫

Γu

U̇ · ρ · n dS

−
∫

ΓJ

Jν dS ∀(ρ, ν) ∈ K0

(2.11)

Setting B = A : L−1 and k′ = k −A : L−1 : A, the scalar product 〈·, ·〉 in (2.11) is defined by

〈(σ, µ), (σ′, µ′)〉 =
∫

Ω

σ : L−1 : σ′+
1

k′
(
(B : σ)(B : σ′)+µµ′−µ′B : σ−µB : σ′

)
dω (2.12)

Since ε̇p is directly related to the stress via (2.10), Eq. (2.11) can be interpreted as an evolution
equation for the stress and chemical potential fields (σ, µ). Some properties of evolution equation
(2.11) have been studied in Peigney (2018). For our purpose, one of the main result is that any
solution to (2.11) converges towards a cyclic steady state in which ε̇p, σ, µ,  are T -periodic.
Moreover, the values of ε̇p, σ̇, µ̇,  on the cyclic steady state are unique, i.e. independent of the
initial conditions. Elastic shakedown corresponds to the special case where ε̇p = 0 in the cyclic
steady state. This implies that the total dissipation on the cyclic steady state reduces to the
diffusion-related dissipation, see Eq. (2.8).
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2.4. Case of elasto-diffusion

Let us consider the purely elasto-diffusive problem obtained by discarding plastic flow in the
original problem. That fictitious problem is defined by the very same equations as before, except
that the variable εp is removed. As a particular case of (2.11), the stress and chemical potential
fields (σ̃, µ̃) of the purely elasto-diffusive problem satisfy

(σ̃, µ̃) ∈ K(f ,T,M)

〈( ˙̃σ, ˙̃µ), (ρ, ν)〉 = −
∫

Ω

∂ψ(∇µ̃) · ∇ν dω +
∫

Γu

U̇ · ρ · n dS −
∫

ΓJ

Jν dS ∀(ρ, ν) ∈ K0 (2.13)

T -periodic solutions to (2.13) play an important role in the shakedown analysis as detailed
later on. Although there is not uniqueness, T -periodic solutions to (2.13) are quite similar to
one another as they differ by constant fields. More precisely, if (σE , µE) denotes a particular
T -periodic solution to (2.13), then the whole family of T -periodic solutions to elasto-diffusive
equation (2.13) is

{
(σE + ρ̃, µE + η̃) : (ρ̃, η̃) ∈ K0; ρ̃ time-independent; η̃ constant

}
(2.14)

3. Static shakedown theorem in coupled plasticity-diffusion

Let A0 be the set of self-equilibrated stress fields, i.e.

A0 = {ρ : divρ = 0 in Ω, ρ · n = 0 on ΓT }

Both a necessary and a sufficient condition for shakedown have been obtained in Peigney (2018).
They read as follows:

Shakedown condition 1 (necessary) If shakedown occurs, then there exists a T -periodic solu-
tion (σ̃, µ̃) to purely elasto-diffusive equation (2.13) that satisfies f(σ̃) ¬ 0.

Shakedown condition 2 (sufficient) If there exists a time-independent stress field ρ ∈ A0 such
that f(σE(x, t) +ρ(x)) < 0 for all (x, t) ∈ Ω× [0, T ], then shakedown occurs whatever the
initial state.

Although the statement of shakedown condition 2 above is similar to the Melan theorem, we
emphasize that its proof largely differs from the standard proof used in Melan theorem for pure
plasticity.

Shakedown condition 2 motivates the introduction of a ‘static security coefficient’ mS as

mS = sup
{
m : there exists ρ ∈ A0 such that f(ρ(x) +mσE(x, t)) ¬ 0

for all (x, t) ∈ Ω × [0, T ]
} (3.1)

The value of mS indeed determines the shakedown behavior according to the following rules
{
mS > 1 =⇒ shakedown occurs
mS < 1 =⇒ shakedown does not occur

(3.2)

Let us briefly justify (3.2). Firstly, consider the case mS > 1 and let m > 1, ρ ∈ A0 be such
f(ρ(x) +mσE(x, t)) ¬ 0 for all (x, t) ∈ Ω × [0, T ]. Since f(0) = 0 and f is strictly convex, we
have

f
(
ρ

m
+ σE

)
<
1

m
f(ρ+mσE) ¬ 0
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Since ρ/m ∈ A0, shakedown condition 2 applies and ensures that shakedown occurs. If now
mS < 1, no time-independent stress field ρ ∈ A0 can be found in such fashion that f(ρ(x) +
σ
E(x, t)) ¬ 0 for all (x, t) ∈ Ω× [0, T ]. Therefore, by (2.14) there is no T -periodic solution (σ̃, µ̃)
to the pure elasto-diffusive problem such that f(σ̃) ¬ 0 on Ω× [0, T ], which is a prerequisite for
shakedown to occur (see shakedown condition 1 above).
In practice, lower bounds m−S on mS are obtained by choosing particular self-equilibrated

stress fields in (3.1). If such a lower bound m−S verifies 1 ¬ m−S , then shakedown occurs as a
consequence of (3.2).

4. Kinematic shakedown theorem

Our objective is now to obtain upper bounds on mS. In perfect plasticity (without diffusion),
Koiter’s theorem allows such upper bounds to be obtained (Koiter, 1960). We recall that the rea-
soning used in Koiter’s theorem consists in bounding the total dissipation. In diffusion-induced
plasticity, bounding the total dissipation amounts to bounding the plastic dissipation and the
diffusion-related dissipation, meaning that the medium reaches an elastic cyclic steady state in
which the concentration is time-independent. Here we are interested in situations in which the
plastic strain – but not the concentration – stabilizes to a limit, so that diffusion is the only
active source of dissipation in the cyclic steady state. To obtain relevant bounds in such a case,
we use a different line of arguments than those used by Koiter (1960). Specifically, the strategy
that we employ consists in using convex duality, as used for instance by Nguyen (2003).

Let A be the set of triplets (m,ρ∗, σ̃) such that ρ∗(x) is a time-independent self-equilibrated
stress field and σ̃(x, t) ∈ C for all (x, t). From (3.1) we have

mS = sup
(m,ρ∗,σ̃)∈A

ρ∗+mσE=σ̃

m

This is a constrained maximization problem over the convex set A. Denote by L the correspon-
ding lagrangian, i.e.

L(m,ρ∗, σ̃;d) = m+
∫

Ω

T∫

0

d(x, t) : (σ̃(x, t)− ρ∗(x) −mσE(x, t)) dv dt (4.1)

where the second-order tensor d plays the role of a Lagrange multiplier associated to the con-
straint ρ∗ +mσE = σ̃. We have

mS = sup
(m,ρ∗,σ̃)∈A

inf
d

L(m,ρ∗, σ̃;d)

The min-max inequality gives

sup
(m,ρ∗,σ̃)∈A

inf
d

L ¬ inf
d

sup
(m,ρ∗,σ̃)∈A

L (4.2)

Equation (4.2) implies that

mS ¬ mK (4.3)

where

mK = inf
d

sup
(m,ρ∗,σ̃)∈A

L(m,ρ∗, σ̃;d)
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Let us rewrite the coefficient mK in a more explicit form. For a given d, the definition (4.1)
yields

sup
(m,ρ∗,σ̃)∈A

L = sup
m
m
(
1−
∫

Ω

T∫

0

d(x, t) : σE(x, t) dv dt
)

+ sup
σ̃∈C

∫

Ω

T∫

0

d(x, t) : σ̃(x, t) dv dt + sup
ρ∗∈A0

−
∫

Ω

Ep(x) : ρ∗(x) dv dt

(4.4)

where Ep =
∫ T
0 d(x, t) dt. Let us examine each term in the right-hand side of (4.4). We clearly

have

sup
m
m
(
1−
∫

Ω

T∫

0

d : σE dv dt
)
=




0 if

∫
Ω

∫ T
0 d : σ

E dv dt = 1

∞ otherwise

We also have

sup
σ̃∈C

∫

Ω

T∫

0

d(x, t) : σ̃(x, t) dv dt =

∫

Ω

T∫

0

D(d(x, t)) dv dt

where D(d) = supσ∈C σ : d. Let us focus on the last term in (4.4). We denote by B0 the set of
strain fields that derive from displacement fields vanishing on Γu, i.e.

B0 =
{
ε : ε =

1

2
(∇ξr +∇tξr); ξr = 0 on Γu

}

Let ρr and εr be the residual stress and strain fields associated with the strain field Ep, as
defined by the relations ρr ∈ A0, εr ∈ B0 and
ε
r = L

−1 : ρr +Ep (4.5)

Hence, for any ρ∗ ∈ A0

0 =

∫

Ω

ρ
∗ : L−1 : ρr dv +

∫

Ω

ρ
∗ : Ep dv

Choosing ρ∗ = xρr for any arbitrary x shows that

sup
ρ∗∈A0

−
∫

Ω

Ep(x) : ρ∗(x) dv =∞ if ρr 6= 0

On the other hand, it follows directly from (4.5) that

sup
ρ∗∈A0

−
∫

Ω

Ep(x) : ρ∗(x) dv = 0 if ρr = 0

The condition ρr = 0 means that Ep ∈ B0. Collecting the results established so far, we have

sup
(m,ρ∗,σ̃)∈A

L =






∫
Ω

∫ T
0 D(d(x, t)) dv dt if

∫ T
0

∫
Ω d : σ

E dv dt = 1 and
∫ T
0 d ∈ B0

+∞ otherwise

Hence

mK = inf
{∫

Ω

T∫

0

D(d(x, t)) dv dt :
T∫

0

∫

Ω

d : σE dv dt = 1 and

T∫

0

d ∈ B0
}

(4.6)

IfmK < 1 then by (4.3) and (3.2) we can conclude that shakedown does not occur. The necessary
condition for shakedown is thus that mK  1. We can thus formulate the following
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Shakedown condition 3 (necessary) If shakedown occurs, then 1 ¬
∫
Ω

∫ T
0 D(d(x, t)) dv dt for

any history d such that
∫ T
0

∫
Ω d : σ

E dv dt = 1 and
∫ T
0 d ∈ B0.

In practice, an upper bound m+K on mK (and therefore on mS) can be obtained by construc-

ting specific histories d satisfying the requirements
∫ T
0

∫
Ω d : σ

E dv dt = 1 and
∫ T
0 d ∈ B0.

5. Application

As an illustration, the shakedown theorems presented previously are applied to a problem re-
lated to Li-ion batteries. We consider a spherical electrode particle with radius R. A chemical
potential1 Md(t) and pressure P (t) are applied on the boundary as

P (t) = p cos(ωt) Md = µ0 + µd cos(ωt + φ) (5.1)

The objective is to find the set of values (p, µd, ω, φ) for which elastic shakedown occurs.
The free energy w is taken as isotropic, so that constitutive relations (2.6) become

σm = K trε+ ac s = 2G(εd − εp) µ = µ0 + kc+ a trε (5.2)

where εd is the deviatoric strain, σm = ( trσ)/3 is the hydrostatic stress, s is the deviatoric stress
and c is the concentration of lithium ions. In (5.2), K, G, a and µ0 are material parameters. The
scalar material parameter a in (5.2) accounts for the chemo-mechanical coupling and is directly
related to the volumetric expansion coefficient associated with the insertion of lithium. Fick’s
law is adopted for diffusion, i.e.  = (D/k)∇µ where D is the diffusion coefficient. The elasticity
domain C is of the von Mises type, i.e. defined by s : s ¬ σ2Y where σY is the yield strength.

5.1. Purely elasto-diffusive response

The first step consists in finding a T -periodic solution (σE , µE ,uE , cE) to the pure elasto-
diffusive problem. For harmonic loading (5.1), such a T -periodic solution (σE , µE ,uE , cE) can
be found in the form

σ
E(x, t) = ℜ(σ̂E(x)eiωt) µE(x, t) = µ0 + ℜ(µ̂E(r)eiωt)

E(x, t) = ℜ(̂E(x)eiωt) uE(x, t) = ℜ(ûE(r)eiωter)
cE(x, t) = ℜ(ĉE(r)eiωt)

(5.3)

Here and in the following, the superscript (̂·) is used to denote complex-values quantities. The
real part of complex-valued quantities is denoted by ℜ. In (5.3), (er, eθ, eφ) is the local basis for
the spherical coordinates (r, θ, φ). Substituting (5.3) into the conservation equations and in the
constitutive equations leads to a spherical Bessel differential equation in ĉE

r2
d2ĉE

dr2
+ 2r

dĉE

dr
+ λ̂2r2ĉE = 0 (5.4)

where

λ̂ = ei3π/4
√

ω

D(1− aã/k) ã =
3a

3K + 4G
(5.5)

Bounded solutions to (5.4) take the form ĉE(r) = Aj0(λr) where j is the spherical Bessel function
of the first kind. The multiplicative constant A as well as the expression of the displacement are

1For electrode materials, the chemical potential is proportional to the electric voltage. The chemical
boundary condition considered thus amounts to prescribe a time-harmonic voltage on the boundary.
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obtained from the equilibrium equation and the boundary conditions. Omitting the detail of the
calculation, we obtain

A =
µde
iφ +

ap

K

(k − aã)j0(R̂)−
4G

K
aã
j1(R̂)

R̂

(5.6)

For later reference, we report the final expression of the deviatoric part sE of the stress
response σE . Setting r̂ = λ̂r and R̂ = λ̂R, we find

sE(x, t) = sEθ (r, t)(−2er ⊗ er + eθ ⊗ eθ + eφ ⊗ eφ)

where sEθ (x, t) = ℜ(ŝEθ (r)eiωt) and

ŝEθ (r) = −2GAã
(j1(r̂)

r̂
− j0(r̂)

3

)
(5.7)

5.2. Application of the static theorem

A lower bound on mS can be obtained by taking ρ = 0 in (3.1). We have indeed mS  m
for any m such that 0.5m2sE(x, t) : sE(x, t) ¬ σ2Y for all x and t. It follows that

mS 
√
2σY√

supx,t s
E(x, t) : sE(x, t)

Direct calculation gives
√
sE(x, t) : sE(x, t) =

√
6|sEθ (r, t)|. Since sEθ (x, t) = ℜ(ŝEθ (r)eiωt), we

have supt |sEθ (r, t)| = |ŝEθ (r)|. Furthermore, it can be verified that |ŝEθ (r)| increases with r.
Hence

mS 
σY√
3|ŝEθ (R)|

(5.8)

5.3. Application of the kinematic theorem

Recalling that sEθ (r, t) = ℜ(ŝEθ (r)eiωt), we denote by t0 and t1 the time instants in [0, T ] such
that sEθ (R, t0) = −sEθ (R, t1) = |ŝEθ (R)|. We denote by δx the Dirac distribution centered at x.
Let us consider histories dn of the form

dn(x, t) = fn(r)gn(t)(−2er ⊗ er + eθ ⊗ eθ + eφ ⊗ eφ)

where

fn  0
R∫

0

4πr2fn(r) dr = 1 4πr2fn −→
n→∞

δR

T∫

0

gn(t) dt = 0

T∫

0

|gn(t)| dt = 1 gn −→
n→∞

1

2
(δt0 − δt1)

(5.9)

Observe that
∫ T
0 d(x, t) dt = 0 hence

∫ T
0 d(x, t) dt ∈ B0. For the von Mises plasticity model, we

have D(d) =
√
2σY ‖d‖ if d is deviatoric, D(d) =∞ otherwise. Noting that trdn = 0 we find

∫

Ω

T∫

0

D(dn(x, t)) dv dt = 2
√
3σY
( R∫

0

|fn(r)|4πr2 dr
)( T∫

0

|gn(t)| dt
)
= 2
√
3σY
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Set In =
∫
Ω

∫ T
0 σ

E : dn dv dt. Using the strain history d = dn/In in (4.6) yields

mK ¬
2
√
3σY
In

From (5.9) we have

In −→
n→∞

3
(
sEθ (R, t0)− sEθ (R, t1)

)
= 6|ŝEθ (R)|

Hence

mK ¬
√
3σY

3|ŝEθ (R)|
(5.10)

Comparing (5.8) with (5.10) and recalling that mS ¬ mK , we can conclude that mS = mK =
σY /(
√
3|ŝEθ (R)|). The combination of the static and kinematic theorems thus allows the exact

value of mS to be found. From (3.2), the shakedown domain of the space of loading parameters
(p, µd, ω, φ) is characterized by the equation

σY√
3|ŝEθ (R)|

> 1 (5.11)

Consider the dimensionless loading parameters (µ̃d, p̃) defined as µ̃d = µd/a and p̃ = p/K. Using
(5.7), condition (5.11) can be rewritten in a more explicit fashion as

µ̃2d + p̃
2 + 2cosφµ̃dp̃ ¬ H(ω)2 (5.12)

where

H(ω) =

√
3σY
2G

∣∣∣∣∣

k

aã
− 1− 4G

3K
z

1− z

∣∣∣∣∣ z =
3j1(R̂)

R̂j0(R̂)

Fig. 1. Shakedown domain E(ω, φ) in the plane (p̃, µ̃d), for cosφ ∈ {0, 0.4, 0.8, 0.9} (a). Function H(ω)
defining the size of E(ω, φ) (b)

Equation (5.12) defines the set of loading parameters (p̃, µ̃d, ω, φ) for which elastic shakedown
occurs. Let E(ω, φ) be the values of (p̃, µ̃d) satisfying (5.12) for any given (ω, φ). Provided
| cosφ| 6= 1, E(ω, φ) has an elliptic shape in the plane (p̃, µ̃d) as represented in Fig. 1a. The size
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of the ellipse E(ω, φ) is controlled by the function H(ω). That function is represented in Fig. 1b
in terms of the dimensionless charging rate ω̃ = ωR2/D. The plot in Fig. 1b corresponds to the
situation aã≪ k in which case H(ω) ≃ H0/|z − 1| with H0 =

√
3σY k/(2Gaã).

Two main observations are in order. The first one is that the applied pressure is found to
have an influence on the shakedown behavior. This is in contrast with diffusion-less plasticity,
for which the stress in a spherical particle under pressure is purely hydrostatic. The second
observation is that, even though the rate-independent plasticity is considered, the loading rate
has an influence on the shakedown limit (through the function H). This is a consequence of the
coupling between plasticity and diffusion, the latter being a rate-dependent process. Note that
H(ω) becomes infinite in the limit ω → 0. This corresponds to situations in the lithium ions
have time to diffuse uniformly in the whole particle.
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